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Sediment resuspension affects physical, chemical and biological processes in the sea [1-3]. Biological 
sediment resuspension, caused by activity of benthic fish is common [4]. These events are temporally 
abrupt and spatially discrete. Understanding resuspension requires a wide set of methods [5-9]. Existing 
in-situ methods quantify sediment resuspension in cm-scale [10-16]. We seek multi-meter-scale 
measurements of these events using far-field cameras. We develop an imaging technology designed to 
(a) observe the seafloor and the water medium above it from a distance, (b) sense sediment resuspension 
events, and (c) algorithmically quantify the resuspension. 

 Our technology quantifies the amount of material lifted, and its spatio-temporal distribution. The 
spatial distribution of the particles is three-dimensional (3D). Hence, we develop an imaging system to 
reconstruct sediment resuspension in 3D. To achieve this, the evolving sediment plume is imaged against 
a diffuse backlight. Imaging is done simultaneously from multiple directions (Fig. 1[Left]). The resuspended 
particles affect light that reaches the cameras. Analysis uses a computed tomography (CT) principle [17-

20]. Medical CT, as a means for volumetric sensing, motivates this. Underwater imaging is challenging [21-
24]. Refractions and reflections complicate imaging even in controlled lab settings. Moreover, a large 

Figure 1: [Left] Illustration of tomographic system. [Right] LOS of a pixel. 
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submerged system affects flow and consequently may bias measurements. Therefore, we develop optical 
and algorithmic techniques, aiming to reduce as much as possible these obstacles.  

Let a screen have radiance 𝑖0. Pixel 𝑝 in a camera senses the radiance along a line of sight (LOS), as shown 

Fig. 1[Right]. Particles in the medium have extinction cross section 𝜎. The extinction coefficient is 𝛽 = 𝜎𝜌, 
where 𝜌 is the particles’ density. The optical depth on the LOS is  

 𝜏 = ∫ 𝛽(𝑟)𝑑𝑟
LOS

. (1) 

The transmitted radiance is   

 𝑖 = 𝑖0𝑒−𝜏. (2) 

Let 𝛽Water,  𝛽(𝑟)Sediment be the extinction coefficients of water and sediment particles, respectively. The 

radiance reaching pixel 𝑝 through sediment-free water is 𝑖𝑝
W ≜ 𝑖0𝑒− ∫ 𝛽Water𝑑𝑟

LOS . Then, the radiance 

through the resuspension is 

 𝑖𝑝 = 𝑖𝑝
W𝑒− ∫ 𝛽(𝑟)Sediment𝑑𝑟

𝐿OS . (3) 

Hence, the optical depth is  

 𝜏𝑝 = − ln (
𝑖𝑝

𝑖𝑝
W) = ∫ 𝛽(𝑟)Sediment𝑑𝑟

LOS

. (4) 

Tomographic setups have multidirectional LOSs through the scene (Fig. 2[left]). From Eq. (4), 

 𝜏p ≈ ∑ 𝑎𝑝,𝑣𝛽𝑣
Sediment

𝑣 ≜  �⃗�𝑝𝛽Sediment, (5) 

where 𝑎𝑝,𝑣 is the length of the ray segment in the LOS of pixel 𝑝, in voxel 𝑣. Here 𝛽𝑣
Sediment is the sediment 

extinction coefficient of voxel 𝑣. Let 𝛽Sediment 𝜖 ℝ𝑛×1 represent the volumetric extinction coefficients in 
all voxels 𝑣 ∈ 1. . 𝑛. The overall sampled data is 𝜏  ∈  ℝ𝑚×1  representing sampled optical depths in each 
pixel 𝑝 ∈ 1. . 𝑚. Then,  

 𝜏 ≈ 𝐴𝛽Sediment. (6) 

Figure 2: [Left] Projections from n voxels to m pixels. [Right] Flow of simulations environment. 
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Here 𝐴 ∈  ℝ𝑚×𝑛 is a projection matrix. The volumetric extinction coefficient is estimated by 

 �̂� = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝐴𝛽 − τ⃗⃗‖2
2. (7) 

We tested this concept using both simulations and experiments. Physics based rendering [25-27] 
synthetically simulates underwater imaging. The simulation analyzes the rendered images and performs 
3D tomographic reconstruction. This enables optimization of the system. Simulations (Fig. 2[Right]) show 
successful reconstruction of synthetic clouds. We performed experiments in a research seawater pool. 
The optical system contained eight sealed cameras, directed to the volume of interest above a lighting 
screen (Fig. 3). We externally controlled the cameras to simultaneously image the scene from several 
perspectives. We used openCV [28], a calibration board, markers on the screen and Agisoft [29], to 
calibrate the system geometry. This led us to the projection matrix 𝐴 used in Eqs. (6,7). Before each 
resuspension event, we imaged the lighting screen. Inspired by the communicating vessels principle, we 
built an injection system. A bucket contained MP SILICA 12 − 26[𝑢𝑚] particles suspended in water at 
density of 22.5 [𝑔𝑟 𝑙⁄ ]. Two liters were drained within ~ 63 sec, to shoot a resuspended cloud from the 
middle of the lighting screen. Resuspension was imaged at 10 fps. 

Fig. 4[Left] shows two viewpoints: without sediment (𝐼W), then a resuspension event and finally the 

sediment optical depth. We used AIRtool [30] for Simultaneous Algebraic Reconstruction Technique 

Figure 3: [Left] Camera housings are mounted on an octagonal frame. The frame resides ~2.5[m] 

above the lighting screen. From middle of lighting screen, emerges an output nozzle. [Right]Each 

housing contains an ODRIOD XU-4, an IDS UI-3260 camera, and a Tamron M112FM12 lens Figure 
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(SART) [31] in the tomography analysis. Fig. 4[Right] shows a meter-scale recovery of the sediment cloud 
(green channel), in 2[𝑐𝑚] voxel resolution. 

We envision future developments to obviate active lighting in tomographic setups. Such a system may 
enable research of marine animals which create resuspension events. The system can advance other 
underwater imaging applications. 
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Figure 4: [Left] top - Background images (IW), middle - Sediment cloud images (I), bottom - 
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